کشف ذخایر مسی با تلفیق روش های هوشمند توسط محقق دانشگاه امیرکبیر (دکتر رضا افتخاری) :: پایگاه خبری کافه دانشگاهیان

پایگاه خبری کافه دانشگاهیان

دارای مجوز از وزارت فرهنگ و ارشاد اسلامی

برای تبلیغات در پایگاه خبری کافه دانشگاهیان بزرگترین پایگاه اطلاع رسانی دانشگاههای کشور با شماره 09101308639 تماس حاصل فرمایید Image

کشف ذخایر مسی با تلفیق روش های هوشمند توسط محقق دانشگاه امیرکبیر (دکتر رضا افتخاری)

  • ۱۴۲

موفقیت علمی:

کشف ذخایر مسی با تلفیق روش های هوشمند توسط محقق دانشگاه امیرکبیر (دکتر رضا افتخاری)

محقق دانشگاه صنعتی امیرکبیر موفق شد با تلفیق روش‌های تحلیلی هوشمند، راهی جدید برای کشف ذخایر اقتصادی مس کشف کند.

دکتر عارف شیرازی دانش‌آموخته دانشگاه صنعتی امیرکبیر و مجری طرح تلفیق روش‌‏های تحلیلی هوشمند به منظور مدل‏ سازی ژئوشیمیایی و شناسایی کلیدهای اکتشافی در مورد طرح خود توضیح داد: شناسایی مناطق مهم معدنی از نظر کانی زایی، اولین مرحله از چرخه عمر معدن به شمار می ‏آید؛ بنابراین به طور مستقیم یا غیرمستقیم، مراحل بعدی را تحت تأثیر نتایج خود قرار می‌‏دهد. ارائه یک مدل یکپارچه از ویژگی‌های مختلف مربوط به کانی ‏زایی به منظور اکتشاف ذخایر اقتصادی مس به وسیله روش‌های مبتنی بر هوش مصنوعی هدف این پروژه بوده است.

وی با بیان اینکه مدل یکپارچه پتانسیل معدنی مس از اعتبار بالایی برخوردار است به طوری که بر اساس روش ماتریکس در‏هم‌ریختگی، صحت میانگین بیش از هشتاد درصد محاسبه شده است، گفت: به عبارت ساده تر مدل ارائه شده مبتنی بر هوش مصنوعی توانسته است با اعتبار بالایی پتانسیل های کانی زایی مس را بارزسازی کند. نتایج حاصل از این پژوهش، گامی بزرگ جهت صرفه‌جویی در منابع مدیریتی در بخش اکتشافات مواد معدنی است.

محقق دانشگاه صنعتی امیرکبیر خاطرنشان کرد: بر اساس بررسی‌‏ها، کلیدهای اکتشافی مربوط به کانی ‏زایی مس ‏سولفید‏ توده‌‏ای در قالب پنج لایه ‏اطلاعاتی آماده شد. این لایه‏‌های اطلاعاتی عبارتند از ‏زمین‏ شناسی ساختاری، دگرسانی، ‏لیتولوژی، ژئوشیمی و زمین‏‌گاه ‏شناسی که در روند مطالعاتی هر یک، از روش‌های تحلیلی و مبتنی بر هوش مصنوعی استفاده شده است.

وی گفت: از جمله روش‏‌های بکار رفته در تحلیل لایه‏ های اطلاعاتی می‏ توان به آمار کلاسیک، زمین ‌آمار، هندسه فرکتالی، شبکه عصبی مصنوعی، یادگیری ماشین و خوشه ‏بندی اشاره ‏کرد. در نهایت برای شناسایی نواحی پرپتانسیل کانی ‏زایی مس، لایه‌های اکتشافی مطالعه شده، به روش ابداعی فرآیند تحلیل سلسله مراتبی - عصبی فازی (NFAHP) یکپارچه شد.

شیرازی خاطرنشان کرد: صحت‌‏سنجی مدل پتانسیل معدنی مس‏‌سولفید ‏توده‌‏ای در ناحیه سهل‌آباد، با رویکرد ماتریکس درهم ‏ریختگی و ضریب توافق کاپا ارزیابی شد. میزان صحت کلی برای کلاس‏‌های پتانسیل بالا، متوسط و پایین به ترتیب ۸۰، ۸۳ و ۸۳ درصد و ضریب توافق کاپا ۶۵/۰ محاسبه شده است. این نتیجه تاییدی است بر اعتبار مدل پتانسیل کانی ‏زایی مس در ناحیه سهل‌آباد است.

وی افزود: سیستم مدیریت اکتشافات معدنی کشور، باید خود را با روش ‏های روز دنیا از جمله روش های مبتنی بر هوش مصنوعی همراه کند. مدل‌‏های تلفیقی بهینه سازی شده بر مبنای هوش مصنوعی، می ‏تواند تا حد زیادی در صرفه جویی منابع مالی و زمانی موثر باشد. این مهم به عنوان گام نخست در شناسایی ذخایر معدنی، به طور کلی تاثیر به‌سزایی بر روند رشد صنایع کشور خواهد داشت.

این محقق دانشگاه امیرکبیر گفت: از کاربردهای این طرح می توان به افزایش صحت مناطق مستعد کانی زایی شناسایی شده، استفاده همزمان از روش های داده محور و دانش محور، ارائه رویکردی جدید از کاربرد روش خوشه بندی کا-میانگین در تفکیک جوامع آماری و جدایش آنومالی از زمینه، ارائه روش ابداعی فرآیند تحلیل سلسله مراتبی فازی عصبی (Neuro-Fuzzy- Analytic Hierarchy Process) یا به اختصار NFAHP به عنوان روشی جدید در یکپارچه سازی لایه های اطلاعاتی اشاره کرد. این روش به طور کلی قابلیت تلفیق و یکپارچه‌سازی هرگونه لایه اطلاعاتی را دارد که در طرح حاضر به صورت کاربردی در اکتشاف معدن استفاده شده است.

استاد راهنمای این طرح پروفسور اردشیر هزارخانی عضو هیات علمی دانشگاه صنعتی امیرکبیر است. (به نقل از ایرنا)

نظرات: (۰) هیچ نظری هنوز ثبت نشده است
ارسال نظر آزاد است، اما اگر قبلا در بیان ثبت نام کرده اید می توانید ابتدا وارد شوید.
شما میتوانید از این تگهای html استفاده کنید:
<b> یا <strong>، <em> یا <i>، <u>، <strike> یا <s>، <sup>، <sub>، <blockquote>، <code>، <pre>، <hr>، <br>، <p>، <a href="" title="">، <span style="">، <div align="">
تجدید کد امنیتی

مطالب پیشنهادی

تماس با من

  • ایمیل: fdpub@yahoo.com
  • تلفن: 02166490178
  • فاکس: 02166490179
  • موبایل: 09121308639
  • آدرس خبرگزاری: تهران، میدان انقلاب اسلامی، خ 16 آذر روبروی درب غربی دانشگاه تهران ک پارسی پ 6

همکاری با ما

چنانچه مایل به همکاری با ما هستید می توانید اخبار و مقالات خود را از طریق راه های ارتباطی به دست ما برسانید تا بعد از تایید سردبیر سایت منتشر نماییم؛ سردبیر پایگاه خبری: مهندس سامان بیات ترک.